High speed droplet-based delivery system for passive pumping in microfluidic devices.

نویسندگان

  • Pedro J Resto
  • Brian Mogen
  • Fan Wu
  • Erwin Berthier
  • David Beebe
  • Justin Williams
چکیده

A novel microfluidic system has been developed that uses the phenomenon of passive pumping along with a user controlled droplet based fluid delivery system. Passive pumping is the phenomenon by which surface tension induced pressure differences drive fluid movement in closed channels. The automated fluid delivery system consists of a set of voltage controlled valves with micro-nozzles connected to a fluid reservoir and a control system. These voltage controlled valves offer a volumetrically precise way to deliver fluid droplets to the inlet of a microfluidic device in a high frequency manner. Based on the dimensions demonstrated in the current study example, the system is capable of flowing 4 milliliters per minute (through a 2.2 mm by 260 microm cross-sectional channel). Based on these same channel dimensions, fluid exchange of a point inside the channel can be achieved in as little as eight milliseconds. It is observed that there is interplay between momentum of the system (imparted by a combination of the droplets created by the valves and the fluid velocity in the channel), and the surface tension of the liquid. Where momentum provides velocity to the fluid flow (or vice-versa), equilibration of surface tension at the inlet provides a sudden stop to any flow. This sudden stop allows the user to control the flow characteristics of the channel and opens the door for a variety of biological applications, ranging anywhere from reagent delivery to drug-cell studies. It is also observed that when nozzles are aimed at the inlet at shallow angles, the droplet momentum can cause additional interesting fluid phenomena, such as mixing of multiple droplets in the inlet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications.

Surface tension driven passive pumping is a microfluidic technology that uses the surface tension present in small droplets to generate flow. To enhance the potential of this type of passive pumping, a new 'micro passive pumping' technique has been developed that allows for high throughput fluidic delivery by combining passive pumping with a small droplet-based fluidic ejection system. Flow rat...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation.

There is a recognized and growing need for rapid and efficient cell assays, where the size of microfluidic devices lend themselves to the manipulation of cellular populations down to the single cell level. An exceptional way to analyze cells independently is to encapsulate them within aqueous droplets surrounded by an immiscible fluid, so that reagents and reaction products are contained within...

متن کامل

Enabling Droplet Functionality on Anisotropic Ratchet Conveyors

Anisotropic ratchet conveyors (ARCs) are a recently developed microfluidic platform that transports liquid droplets through a passive, microfabricated surface pattern and applied orthogonal vibrations. In this work, three new functionalities are presented for controlling droplet transport on the ARC system. These devices can pause droplet transport (ARC gate), decide between two pathways of dro...

متن کامل

Finger-triggered portable PDMS suction cup for equipment-free microfluidic pumping

This study presents a finger-triggered portable polydimethylsiloxane suction cup that enables equipment-free microfluidic pumping. The key feature of this method is that its operation only involves a “pressing-and-releasing” action for the cup placed at the outlet of a microfluidic device, which transports the fluid at the inlet toward the outlet through a microchannel. This method is simple, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2009